

Math 565: Functional Analysis

Lecture 3

Theorem. For $1 \leq p < \infty$, $L^p(\mu)$ is a Banach space.

Proof. Using the absolutely convergent series criterion, we need to take a series $\sum f_n$ which converges absolutely, i.e. $\sum_n \|f_n\|_p < \infty$, and prove that $\sum f_n$ exists and is in L^p .

Put $g := \sum_{n \in \mathbb{N}} |f_n|$. Then applying MCT to $(\sum_{n \in N} |f_n|)^p / g^p$ and using 1-inequality gives:

$$\|g\|_p = \lim_{N \rightarrow \infty} \left\| \sum_{n \in N} f_n \right\|_p \leq \lim_{N \rightarrow \infty} \sum_{n \in N} \|f_n\|_p = \sum_{n \in \mathbb{N}} \|f_n\|_p < \infty.$$

Thus $g \in L^p$ and in particular $g < \infty$ a.e., which means that $f := \sum f_n$ converges a.e. Finally, $|f - \sum_{n \in N} f_n|^p \leq (|f| + \sum_{n \in N} |f_n|)^p \leq (g + g)^p = 2^p \cdot g^p$ so DCT gives: $\|f - \sum_{n \in N} f_n\|_p \rightarrow 0$ and $\|f\|_p = \lim_{N \rightarrow \infty} \left\| \sum_{n \in N} f_n \right\|_p \leq \|g\|_p < \infty$. □

Theorem. Simple functions are dense in L^p , $1 \leq p < \infty$.

Proof. Writing a function $f \in L^p$ as $f = (f_+ - f_-) + i(f_{+i} - f_{-i})$ reduces to proving that every non-negative $f \in L^p$ is a limit (in L^p) of simple functions. But we know that there is an increasing sequence (f_n) of simple functions such that $f_n \uparrow f$ pointwise, in particular, $|f_n|^p \leq |f|^p$ so $\|f_n\|_p \leq \|f\|_p < \infty$ hence $f_n \in L^p$. Also, $|f - f_n|^p \leq (|f| + |f_n|)^p \leq 2^p |f|^p$ so by DCT, $\|f - f_n\|_p \rightarrow 0$. □

Call a measure space (X, \mathcal{M}, μ) essentially countably generated if there is a ctbl $\mathcal{X} \subseteq \mathcal{M}$ such that the σ -algebra $\langle \mathcal{X} \rangle_\sigma$ generated by \mathcal{X} is essentially \mathcal{M} , i.e. for each $M \in \mathcal{M}$ there is $B \in \langle \mathcal{X} \rangle_\sigma$ with $M =_\mu B$ (i.e. $M \Delta B$ is null)

Theorem. For $1 \leq p < \infty$ and essentially ctblly generated σ -finite measure space (X, \mathcal{M}, μ) , the space $L^p(X, \mathcal{M}, \mu)$ is separable.

Proof. Let $\mathcal{I} \subseteq \mathcal{M}$ be a ctbl set essentially generating \mathcal{M} , and let $\mathcal{A} := \langle \mathcal{I} \rangle$ be the algebra generated by \mathcal{I} , so \mathcal{A} is ctbl.

Claim. For each $M \in \mathcal{M}$ of finite measure and $\varepsilon > 0$ there is $A \in \mathcal{A}$ with $\mu(M \Delta A) \leq \varepsilon$.

Pf of Claim. Because $M = \mu B$ for some $B \in \langle \mathcal{I} \rangle^{\sigma}$, we may assume $M \in \langle \mathcal{I} \rangle^{\sigma}$.

Since μ is σ -finite, the uniqueness part of Carathéodory's extension theorem gives $\mu = (\mu|_{\mathcal{A}})^*$, so $\mu(M) = \inf \left\{ \sum_{n \in \mathbb{N}} \mu(A_n) : M \subseteq \bigcup_{n \in \mathbb{N}} A_n, A_n \in \mathcal{A} \right\}$. Thus, there are $A_n \in \mathcal{A}$ such that $M \subseteq \bigcup_{n \in \mathbb{N}} A_n$ and $\mu(M) \geq \frac{\varepsilon}{2} - \sum_{n \in \mathbb{N}} \mu(A_n)$. In particular, $\sum_{n \in \mathbb{N}} \mu(A_n) \leq \mu(M) + \frac{\varepsilon}{2} < \infty$, so there is $N \in \mathbb{N}$ such that $\sum_{n \geq N} \mu(A_n) \leq \frac{\varepsilon}{2}$. Putting $A := \bigcup_{n \geq N} A_n$, we get:

$$\mu(M \Delta A) \leq \mu(M \Delta \bigcup_{n \in \mathbb{N}} A_n) + \mu\left(\bigcup_{n \geq N} A_n\right) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

□ (Claim)

Let \mathcal{Q} denote the complex-rational (i.e. $(\mathbb{Q} + i\mathbb{Q})$) linear combinations of indicator functions of the sets in \mathcal{A} of finite measure, so \mathcal{Q} is ctbl. To show that \mathcal{Q} is dense in L^p it suffices to approximate indicator functions $\mathbb{1}_M \in L^p$ with indicator functions of sets in \mathcal{A} of finite measure (so there in L^p as well). By the claim, for each $M \in \mathcal{M}$ with $\mu(M) < \infty$ and $\varepsilon > 0$ there is $A \in \mathcal{A}$ with $\mu(M \Delta A) \leq \varepsilon^p$. But then

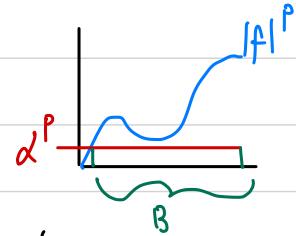
$$\int |\mathbb{1}_M - \mathbb{1}_A|^p d\mu = \int |\mathbb{1}_M - \mathbb{1}_A| d\mu - \mu(M \Delta A) \leq \varepsilon^p \text{ so } \|\mathbb{1}_M - \mathbb{1}_A\|_p \leq \varepsilon. \quad \square$$

Example. $L^p(\mathbb{R}^d, \lambda)$, $L^p(\mathbb{Z}^N, \text{Bernoulli}(\alpha))$, $L^p(\mathbb{N}, \text{counting measure})$ are separable for all $1 \leq p < \infty$.

Chebyshev's inequality. For $0 < p < \infty$, $f \in L^p$, and $\alpha > 0$,

$$\mu(|f| > \alpha) \leq \left(\frac{\|f\|_p}{\alpha} \right)^p.$$

Proof. The monotonicity of $t \mapsto t^p$ gives $B := \{|f| \geq \alpha\} = \{|f|^p \geq \alpha^p\}$, so



$$\mu(B) \cdot d^p \leq \int_B d^p d\mu \leq \int_B |f|^p d\mu \leq \|f\|_p^p, \text{ hence } \mu(B) \leq \frac{\|f\|_p^p}{d^p}.$$

□

L^∞ space.

Let (X, μ) be a measure space. Define $L^\infty(X, \mu)$ as the set (mod null) of μ -measurable functions which are bdd on a μ -conull set, i.e. $f \in L^\infty \Leftrightarrow \exists X' \subseteq X$ conull such that $f|_{X'}$ is bdd. This is a vector space (finite unions of null sets are null) and we define

$$\|f\|_\infty := \inf \{M \geq 0 : |f| \leq M \text{ a.e.}\}$$

In fact, this inf is a min because cbl intersection of conull sets is conull.

(Indeed, let $M_n \downarrow \|f\|_\infty$ then $\{|f| \leq M_n\} = \bigcap_{n \in \mathbb{N}} \{|f| \leq M_n\}$ is conull.)
The value $\|f\|_\infty$ is called the essential supremum of f .

Obs. If $f \in L^\infty(X, \mu)$ then $\exists \tilde{f} = f$ a.e. such that $\|f\|_\infty = \|\tilde{f}\|_u$.

Prop. (a) $\|\cdot\|_\infty$ is a norm on $L^\infty(X, \mu)$.

(b) $L^\infty(X, \mu)$ is a Banach space.

(c) Simple functions are dense in $L^\infty(X, \mu)$.

Proof. Choosing a.e. bdd representatives reduces proving (a)-(c) for $B(X)$, the space of bdd functions. Thus (a) and (b) follow from the fact that $\|\cdot\|_u$ is a norm on $B(X)$ making it a Banach space. As for (c), assuming $f \in L^\infty$ is bdd, we may assume $f > 0$ (by writing $f = (f_+ - f_-) + i(f_+ - f_-)$). But then we know that $\exists (f_n)$ of simple functions s.t. $f_n \nearrow f$ and the convergence is uniform because f is bdd.

Notation. For $0 < p \leq \infty$ and a set X , denote $\ell^p(X) := L^p(X, \delta_X, \text{counting measure})$.

Remark. For $d = \{0, 1, \dots, d-1\}$, $\ell^p(d) = (\mathbb{C}^d, \|\cdot\|_p)$.

Because $\ell^\infty(\mathbb{N}) = \{y_n : n \in \mathbb{N}\}$, $\ell^p(\mathbb{N})$ is separable for $1 \leq p < \infty$. However:

Prop. $\ell^\infty(\mathbb{N})$ is not separable, neither are $L^\infty(\mathbb{R}^d, \lambda)$ and $L^\infty(\mathbb{Z}^N, \text{Bernoulli}(d))$. In fact, $L^\infty(X, \mathcal{A}, \mu)$ is separable $\Leftrightarrow (X, \mathcal{A}, \mu)$ is purely atomic with finite many disjoint atoms.

Proof. To convey the idea, it suffices to prove that $\ell^\infty(\mathbb{N})$ is not separable. The proof of the general statement is left as an exercise.

Note that for distinct $A, B \subseteq \mathbb{N}$, we have $\|\mathbf{1}_A - \mathbf{1}_B\|_\infty = 1$, so the balls $B_{\frac{1}{2}}(\mathbf{1}_A)$ of radius $\frac{1}{2}$ about $\mathbf{1}_A$ are pairwise disjoint for distinct $A \subseteq \mathbb{N}$. Every dense set $D \subseteq \ell^\infty(\mathbb{N})$ must meet each of these balls, so $|D| \geq |\ell^\infty(\mathbb{N})| > |\mathbb{N}|$. □

Multiplicative properties of L^p spaces.

Let $f \in L^p$ and $g \in L^q$, what can we say about $f \cdot g$?

Prop. Geometric average \leq algebraic, i.e. $\forall a, b > 0$ and $d \in (0, 1)$, we have $a^d \cdot b^{(1-d)} \leq d \cdot a + (1-d) \cdot b$.

Proof. This follows from the convexity of exponentiation $t \mapsto e^t$. Indeed,

$$a^d \cdot b^{(1-d)} = (e^A)^d \cdot (e^B)^{1-d} = e^{dA + (1-d)B} \leq d \cdot e^A + (1-d) \cdot e^B = d \cdot a + (1-d) \cdot b. \quad \square$$

Hölder's inequality. Let $0 < p, q \leq \infty$, $f \in L^p$ and $g \in L^q$. Then $fg \in L^r$ where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ (treating $\frac{1}{\infty}$ as 0). In fact,

$$\|fg\|_r \leq \|f\|_p \cdot \|g\|_q. \quad (*)$$

In particular, when p and q are conjugate exponent, i.e. $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\|fg\|_1 \leq \|f\|_p \cdot \|g\|_q. \quad (**)$$

Proof. Case $p = q = \infty$. Then $r = \infty$ and $\|fg\|_\infty \leq \|f\|_\infty \cdot \|g\|_\infty$ holds because

$$\sup_{x \in X} (|f(x)| \cdot |g(x)|) \leq \sup_{x \in X} |f(x)| \cdot \sup_{x \in X} |g(x)|.$$

Case $p < q = \infty$. Then $r = p$ and $\|Fg\|_p^p = \int |f|^p |g|^p d\mu \leq \|g\|_\infty^p \cdot \int |f|^p d\mu = \|f\|_p^p \|g\|_\infty^p$.

Case $p, q < \infty$. (†) follows from (‡) applied to $|f|^r$, $|g|^r$ and $\frac{p}{r}, \frac{q}{r}$, so it suffices to prove (‡). If $\|f\|_p = 0$ or $\|g\|_q = 0$ then $f = 0$ or $g = 0$ and (‡) follows trivially. Thus assume $\|f\|_p, \|g\|_q > 0$. Dividing both sides of (‡) by $\|f\|_p \cdot \|g\|_q$, i.e. replacing f, g with $f/\|f\|_p$ and $g/\|g\|_q$, reduces (‡) to

$$\|fg\|_1 \leq 1$$

for normal f, g , i.e. $\|f\|_p = 1$ and $\|g\|_q = 1$. To this end, applying the geometric-algebraic averages inequality to $\alpha := \frac{1}{p}$ and $1-\alpha = \frac{1}{q}$, we get:

$$|fg| = (|f|^p)^{\frac{1}{p}} \cdot (|g|^q)^{\frac{1}{q}} \leq \frac{1}{p} |f|^p + \frac{1}{q} |g|^q, \text{ so integrating gives:}$$

$$\|fg\|_1 \leq \frac{1}{p} \int |f|^p d\mu + \frac{1}{q} \int |g|^q d\mu = \frac{1}{p} \|f\|_p^p + \frac{1}{q} \|g\|_q^q = \frac{1}{p} + \frac{1}{q} = 1.$$

